
J
H
E
P
0
6
(
2
0
0
8
)
0
0
4

Published by Institute of Physics Publishing for SISSA

Received: April 25, 2008

Accepted: May 23, 2008

Published: June 3, 2008

A short comparison between mT2 and mCT

Mario Serna

Rudolf Peierls Centre for Theoretical Physics, University of Oxford,

1 Keble Road, Oxford, OX1 3NP, U.K.

E-mail: mariojr@alum.mit.edu

Abstract: We compare mT2 with mCT; both are kinematic variables designed to find

relationships between masses of pair-produced new states with symmetric decay chains.

We find that for massless visible particles mCT equals mT2 in a particular limit. We

identify advantages and disadvantages to the use of each variable. Tovey’s paper on mCT

also introduced a powerful concept of extracting mass information from an analysis at

intermediate stages of a symmetric decay chain. We suggest that mT2 is a better tool

for performing this analysis than mCT due to mT2’s better properties under initial state

radiation.
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A. Verifying mT2 in eq. (5) 6

Dark matter’s likely signature in a hadron collider will be missing transverse momen-

tum. The stability of dark matter suggests a charge or conservation law that requires dark

matter particles be produced in pairs at colliders. The kinematic variables mT2 introduced

by Lester and Summers [1]and mCT introduced by Tovey [2] aid in the task of determining

the mass of new states that decay to dark matter particles at hadron colliders. Although

mT2 has been used extensively (see [3 – 7] for a few examples), the variable mCT is new but

shares many similarities and differences with mT2. This note briefly defines mT2 and mCT,

explains when they give identical results, when they differ, and comments on benefits of

each in their intended applications.

Both variables assume a pair-produced new-particle state followed by each branch

decaying symmetrically to visible states and dark-matter candidates which escape detection

and appear as missing transverse momentum. Figure 1 is the simplest example on-which

we can meaningfully compare the two kinematic quantities. The figure shows two partons

colliding and producing some observed initial state radiation (ISR) with four momenta g

and an on-shell, pair-produced new state Y . On each branch, Y decays to on-shell states

X and v1 with masses mX and mv1
, and X then decays to on-shell states N and v2 with

masses mN and mv2
. The four-momenta of v1, v2 and N are respectively α1, α2 and p on

one branch and β1, β2 and q in the other branch. The missing transverse momenta /P T is

given by the transverse part of p + q.

First we describe mT2. The variable mT2 accepts three inputs: χ (an assumed mass of

the two particles carrying away missing transverse momenta), α and β (the visible momenta

of each branch), and /P T = (p + q)T (the missing transverse momenta). The variable mT2

is the minimum mass of the pair of parent particles compatible with the observed particles’

four momenta and an assumed mass for particles carrying away the missing momenta. We

can define mT2 in terms of the transverse mass of each branch where we minimize the

maximum of the two transverse masses over the unknown split between p and q of the

overall missing transverse momenta:

m2
T2(χN , α, β, /P T ) = min

pT +qT =/PT

[

max
{

m2
T (α, p),m2

T (β, q)
}]

. (1)

In this expression χN is the assumed mass of N , α and β are the four momenta of the

visible particles in the two branches, the transverse mass is given by m2
T (α, p) = m2

α +

χ2
N +2(ET (p)ET (α)−pT ·αT ) and the transverse energy ET (p) =

√

p2
T + χ2

N is determined

from the transverse momentum of p and the assumed mass of the particle associated with
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Figure 1: A simplest topology with which we compare mT2 and mCT.

momentum p. An analytic formula for the case with no transverse ISR can be found in the

appendix of [4]. For each event, the quantity mT2(χN = mN , α1 +α2, β1+β2, /P T ) gives the

smallest mass for the parent particle compatible with the event’s kinematics. Under ideal

assumptions, the mass of the parent particle Y is given by the end-point of the distribution

of this mT2 parameter over a large number of events like figure 1. Because a priori we do

not know mN , we need some other mechanism to determine mN .1 We use χ to distinguish

assumed values of the masses (χY , χX , χN ) from the true values for the masses (mY , mX ,

mN ). Because of this dependence on the unknown mass, we should think of maxmT2 as

providing a relationship or constraint between the mass of Y and the mass of N . This

forms a surface in the (χY , χX , χN ) space on which the true mass will lie. We express this

relationship as χY (χN ).2

Tovey [2] recently defined a new variable mCT which has many similarities to mT2.

The variable is defined as

m2
CT(α1, β1) = (ET (α1) + ET (β1))

2 − (α1T − β1T )2. (2)

Tovey’s goal is to identify another constraint between masses in the decay chain. He

observes that in the rest frame of Y the momentum of the back-to-back decay products X

and v1 is given by

(k∗(mY ,mX ,mv1
))2 =

(m2
Y − (mv1

+ mX)2)(m2
Y − (mv1

− mX)2)

4m2
Y

(3)

1The true mN and mY can be found in the case where Y undergoes a three-body (X is off-shell) through

kinks in mT2 [5, 6, 8] or when combined with endpoints from other distribution (like max mll) [7].
2In principle this surface would be considered a function of χY (χX , χN ), but mT2 makes no reference

to the mass of X and the resulting constraints are therefore independent of any assumed value of the mass

of X.
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where k∗ is the two-body excess momentum parameter (2BEMP).3 In the absence of trans-

verse ISR (gT = 0) and if the visible particles are effectively massless (mv1
= 0), Tovey

observes that max mCT(α1, β1) is given by 2k∗; this provides an equation of constraint

between mY and mX . Tovey observes that if we could do this analysis at various stages

along the symmetric decay chain all the masses could be determined.

The big advantage of mCT is in its computational simplicity. Also, mCT is intended to

only be calculated once per event instead of at a variety of choices of χ. In contrast, mT2

is a more computationally intensive parameter to compute; but this is aided by the use of

a shared repository of community tested C++ libraries found at [9].

How are these two variables similar? Both mCT and mT2, in the absences of ISR,

are invariant under back-to-back boosts of the parent particles momenta [6]. The variable

mCT equals mT2(χ = 0) in the special case where χ = 0 and when the visible particles are

massless (α2
1 = β2

1 = 0) and the there is no transverse ISR (gT = 0)

mCT(α1, β1) = mT2(χ = 0, α1, β1, /P T = (p + q + α2 + β2)T ) if α2
1 = β2

1 = 0. (4)

= 2(α1T · β1T + |α1T | |β1T |). (5)

The mCT side of the equation is straight forward. The mT2 side of the expression can be

derived analytically using the formula for mT2 given in [4]; we also outline a short proof

in the appendix. Eq. (4) uses a mT2 in a unconventional way; we group the observed

momenta of the second decay products into the missing transverse momenta. In this limit,

both share an endpoint of 2k∗ = (m2
Y − m2

X)/mY . To the best of our knowledge, this

endpoint was first pointed out by Cho et.al. [5].4 We find it surprising that a physical

relationship between the masses follows from mT2 evaluated at a non physical χ. In the

presence of ISR, eq. (4) is no longer an equality. Furthermore in the presence of the ISR,

the end point of the distribution given by either side of eq. (4) exceeds 2k∗. In both cases,

we will need to solve a combinatoric problem of matching visible particles to their decay

order and branch of the event which is beyond the scope of this paper.

In the case where the visible particle v1 is massive, the two parameters give different

end-points

maxmCT(α1, β1) =
m2

Y − m2
X

mY
+

m2
v1

mY
(6)

maxmT2(χ = 0, α1, β1, /P T = (p + q + α2 + β2)T ) =

√

m2
v1

+ 2(k2
∗

+ k∗

√

k2
∗

+ m2
v1

) (7)

where k∗ is given by eq. (3). Unfortunately, there is no new information about the masses

in these two endpoints. If we solve eq. (6) for mX and substitute this into eq. (7) and (3),

all dependence on mY is eliminated.

Tovey’s idea of analyzing the different steps in a symmetric decay chain to extract the

masses is powerful. Up until now, we have been analyzing both variables in terms of the

3Tovey refers to this as the 2-body mass parameter Mi. We feel calling this a mass is a bit misleading

so we are suggesting 2BEMP.
4The endpoint given by Cho et.al. is violated for non-zero ISR at χN < mN and χN > mN .
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Figure 2: Shows constraints from max mT2 used with different combinations as described

in eqs(8), (9), (10) and the maxm12 described in eq. (12). Intersection is at the true mass

(97 GeV, 144 GeV, 181 GeV) shown by sphere. Events include ISR but otherwise ideal conditions:

no background, resolution, or combinatoric error.

first decay products of Y . This restriction is because mCT requires no transverse ISR to give

a meaningful endpoint. If we were to try and use α2 and β2 to find a relationship between

mX and mN , then we would need to consider the transverse ISR to be (g+α1 +β1)T which

is unlikely to be zero.

We suggest mT2 is a better variable with which to implement Tovey’s idea of analyzing

the different steps in a symmetric decay chain because of its ISR properties. With and

without ISR, mT2’s endpoint gives the correct mass of the parent particle when we assume

the correct value of the missing-energy-particle’s mass.5 For this reason, maxmT2 gives a

meaningful relationship between masses (mY ,mX ,mN ) for all three symmetric pairings of

the visible particles across the two branches. A relationship between mY and mX is given

by

χY (χX) = maxmT2(χX , α1, β1, /P T = (p + q + α2 + β2)T ). (8)

A relationship between mX and mN can be found by computing

χX(χN ) = maxmT2(χN , α2, β2, /P T = (p + q)T ) (9)

where we have grouped α1 + β1 with the g as a part of the ISR. A relationship between

mY and mN can be found by using mT2 in the traditional manner giving

χY (χN ) = maxmT2(χN , α1 + α2, β1 + β2, /P T = (p + q)T ). (10)

5In principle we could plot the max mT2(χX , α1, β1, /P T = (α2 + β2 + p + q)T ) vs χX as a function of

transverse ISR and the value of χX at which the end point is constant would give the correct value of mX ;

at which point the distributions end point would give the correct mY . In practice we probably will not

have enough statistics of ISR events.
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Lastly, we can form a distribution from the invariant mass of the visible particles on each

branch m2
12 = (α1 + α2)

2 or m2
12 = (β1 + β2)

2. The endpoint of this distribution gives a

relationship between mY , mX , and mN given by

maxm2
12 =

(m2
Y − m2

X)(m2
X − m2

N )

m2
X

. (11)

Solving this expression for mY gives the relationship

χ2
Y (χN , χX) =

χ2
X((max m2

12) + χ2
X − χ2

N )

χ2
X − χ2

N

. (12)

Figure 2 shows the constraints from eqs(8), (9), (10), (12) in an ideal simulation using

(mY = 181GeV, mX = 144GeV, mN = 97GeV), 1000 events, and massless visible parti-

cles, and ISR added with an exponential distribution with a mean of 50 GeV. These four

surfaces in principle intersect at a single point (mY ,mX ,mN ) given by the sphere in the

figure 2. Unfortunately, all these surfaces intersect the correct masses at a shallow angles

so we have a sizable uncertainty along the direction of the sum of the masses and a tight

constraints in the perpendicular directions. In other words, the mass differences are well-

determined but not the mass scale. From here one could use a shape fitting technique like

that described in [7] to find a constraint on the sum of the masses. Tovey’s suggestion for

extracting information from these intermediate stages of a symmetric cascade chain clearly

provides more constraints to isolate the true mass than one would find from only using the

one constraint of eq. (10) as described in [5]. However, Tovey’s suggestion is more feasible

using the mT2 rather than mCT because the constraint surfaces derived from mT2 intersect

the true masses even with ISR.

In summary, we have compared and contrasted mCT with mT2. The variable mCT is

a special case of mT2 given by eq. (4) when ISR can be neglected and when the visible

particles are massless. In this case, the end-point of this distribution gives 2k∗, twice the

two-body excess momentum parameter (2BEMP). If mv1
6= 0, the two distributions have

different endpoints but no new information about the masses. In the presence of ISR

the two functions are not equal; both have endpoints that exceed 2k∗. Because of it’s

better properties in the presence of ISR, mT2 is a better variable for the task of extracting

information from each step in the decay chain. Extracting this information requires solving

combinatoric problems which are beyond the scope of this paper.
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A. Verifying mT2 in eq. (5)

We derived the mT2 side of eq. (5) by following the analytic solution given by Barr and

Lester in [4]. In this appendix, we outline how to verify that mT2 is is indeed given by

mT2(χ = 0, α, β, /P T = −αT − βT ) = 2(αT · βT + |αT | |βT |) (A.1)

when α2 = β2 = 0 and p2 = q2 = χ2 = 0 and gT = 0. To do this we note that mT2 can

also be defined as the minimum value of (α + p)2 minimized over p and q subject to the

conditions p2 = q2 = χ2 (on-shell missing energy state), and (α + p)2 = (β + q)2 (equal

on-shell parent-particle state), and (α + β + p + q + g)T = 0 (conservation of transverse

momentum) [7].

The solution which gives eq. (A.1) has pT = −βT and qT = −αT with the rapidity

of p(q) equal to the rapidity of α (β). We now verify that this solution satisfies all the

constraints listed above. Transverse momentum conservation is satisfied trivially: (α+β +

p + q)T = (α + β − α − β)T = 0. The constraint to have the parent particles on-shell can

be verified with 2|αT ||pT | − 2~pT · ~αT = 2|βT ||qT | − 2~qT · ~βT = 2|βT ||βT | + 2~αT · ~βT .

Now all that remains is to show that the parent particle’s mass is a minimum with

respect to ways in which one splits up the missing transverse momentum between pT

and qT while satisfying the above constraints. We take p and q to be a small deviation

from the stated solution pT = −βT + δT and qT = −αT − δT where δT is the small

deviation in the transverse plane. We keep p and q on shell at χ = 0. The terms po,

pz, qo, qz are maintained at their minimum by keeping the rapidity of p and q equal to

α and β. The condition that the parent particles are on-shell and equal is satisfied for

a curve of values for δT . The deviation tangent to this curve near |δT | = 0 is given by

δT (λ) = λ ẑ× (αT |βT |+ βT |αT |) where × is a cross product, ẑ denotes the beam direction,

and we parameterized the magnitude by the scalar λ. Finally, we can substitute p and q

with the deviation δT (λ) back into the expression for the parent particle’s mass (α + p)2

and verify that 2(αT · βT + |αT | |βT |) at λ = 0 is indeed the minimum with respect to

changes in λ.
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